Intrinsic Ergodicity via Obstruction Entropies

نویسنده

  • DANIEL J. THOMPSON
چکیده

Bowen showed that a continuous expansive map with specification has a unique measure of maximal entropy. We show that the conclusion remains true under weaker non-uniform versions of these hypotheses. To this end, we introduce the notions of obstructions to expansivity and specification, and show that if the entropy of such obstructions is smaller than the topological entropy of the map, then there is a unique measure of maximal entropy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic Ergodicity of Fibered Perturbations of Products of Chaotic Smooth Interval Maps

We consider small bered perturbations of direct products of chaotic smooth interval maps. We prove that these multi-dimensional systems have a non-zero and nite number of invariant and ergodic probability measures with maximal entropy. We note that these dynamical systems are neither linear nor expansive. The proof uses a suitable generalization of Hofbauer's Markov diagram developped in 6] whi...

متن کامل

Relative entropy via non-sequential recursive pair substitutions

The entropy of an ergodic source is the limit of properly rescaled 1block entropies of sources obtained applying successive non-sequential recursive pairs substitutions [7],[2]. In this paper we prove that the cross entropy and the KullbackLeibler divergence can be obtained in a similar way. AMS classification scheme numbers: 94A17

متن کامل

ar X iv : m at h / 04 06 08 3 v 3 [ m at h . PR ] 1 7 Ju n 20 05 Large deviations for empirical entropies of g - measures

The entropy of an ergodic finite-alphabet process can be computed from a single typical sample path x1 using the entropy of the k-block empirical probability and letting k grow with n roughly like logn. We further assume that the distribution of the process is a g-measure. We prove large deviation principles for conditional, non-conditional and relative k(n)-block empirical entropies.

متن کامل

Measures of Intermediate Entropies for Skew Product Diffeomorphisms

In this paper we study a skew product map F with a measure μ of positive entropy. We show that if on the fibers the map are C diffeomorphisms with nonzero Lyapunov exponents, then F has ergodic measures of intermediate entropies. To construct these measures we find a set on which the return map is a skew product with horseshoes along fibers. We can control the average return time and show the m...

متن کامل

Stationary Determinantal Processes: Phase Multiplicity, Bernoullicity, Entropy, and Domination

We study a class of stationary processes indexed by Z that are defined via minors of d-dimensional (multilevel) Toeplitz matrices. We obtain necessary and sufficient conditions for phase multiplicity (the existence of a phase transition) analogous to that which occurs in statistical mechanics. Phase uniqueness is equivalent to the presence of a strong K property, a particular strengthening of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012